login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188186
Number of strictly increasing arrangements of 8 numbers in -(n+6)..(n+6) with sum zero
1
289, 910, 2430, 5744, 12346, 24591, 46029, 81805, 139143, 227930, 361384, 556834, 836618, 1229093, 1769773, 2502617, 3481445, 4771508, 6451232, 8614108, 11370764, 14851235, 19207395, 24615603, 31279561, 39433366, 49344790, 61318804, 75701312
OFFSET
1,1
COMMENTS
Row 8 of A188181
LINKS
FORMULA
Empirical: a(n)=3*a(n-1)-2*a(n-2)-3*a(n-4)+4*a(n-5)-3*a(n-8)+3*a(n-9)-a(n-11)-a(n-12)+3*a(n-14)-3*a(n-15)+4*a(n-18)-3*a(n-19)-2*a(n-21)+3*a(n-22)-a(n-23).
Empirical: G.f. -x*(-289 -43*x -278*x^2 -274*x^3 -841*x^4 -615*x^5 -598*x^6 -412*x^7 -715*x^8 -363*x^9 -163*x^10 -72*x^11 -98*x^12 -200*x^13 +217*x^14 -5*x^15 -49*x^16 -253*x^17 +221*x^18 +23*x^19 +108*x^20 -206*x^21 +73*x^22) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(1+x+x^2)^2 *(x-1)^8 ). - R. J. Mathar, Mar 26 2011
EXAMPLE
Some solutions for n=5
.-9..-10..-10...-8..-11...-8...-9..-11...-9..-11..-11...-9..-11..-10..-10...-9
.-8...-8...-9...-7...-3...-5...-8..-10...-8...-7...-5...-7...-4...-9...-9...-7
.-5...-4...-7...-6...-2...-4...-5...-2...-6...-6...-4...-5...-3...-7...-7...-4
.-1....1....0...-2...-1...-3...-4....1...-1...-3...-3...-2...-2...-1....0...-1
..1....2....2....0....1....0...-2....2....3....2....0....0....2....4....4....0
..3....5....6....5....3....5....7....3....4....6....4....3....5....5....5....2
..9....6....8....7....5....6...10....6....7....9....8....9....6....7....6....9
.10....8...10...11....8....9...11...11...10...10...11...11....7...11...11...10
CROSSREFS
Sequence in context: A157990 A261111 A218766 * A112077 A152934 A332737
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 23 2011
STATUS
approved