login
A188184
Number of strictly increasing arrangements of 6 numbers in -(n+4)..(n+4) with sum zero
1
32, 94, 227, 480, 920, 1636, 2739, 4370, 6698, 9926, 14293, 20076, 27594, 37212, 49341, 64444, 83036, 105690, 133037, 165772, 204654, 250510, 304239, 366814, 439284, 522780, 618513, 727782, 851974, 992568, 1151137, 1329352, 1528984
OFFSET
1,1
COMMENTS
Row 6 of A188181
LINKS
FORMULA
Empirical: a(n)=3*a(n-1)-2*a(n-2)-a(n-3)+2*a(n-5)-a(n-6)-a(n-7)+2*a(n-8)-a(n-10)-2*a(n-11)+3*a(n-12)-a(n-13).
Empirical: G.f. -x*(-32 +2*x -9*x^2 -19*x^3 -28*x^4 +x^5 +5*x^6 -17*x^7 +x^8 +10*x^9 +13*x^10 -23*x^11 +8*x^12) / ( (1+x) *(1+x+x^2) *(x^4+x^3+x^2+x+1) *(x-1)^6 ). - R. J. Mathar, Mar 26 2011
EXAMPLE
Some solutions for n=5
.-7...-9...-6...-4...-8...-7...-7...-6...-7...-6...-8...-9...-6...-6...-9...-8
.-5...-5...-4...-2...-6...-5...-2...-5...-3...-3...-3...-2...-3...-5...-6...-3
.-4....1...-1...-1....1...-4...-1...-2....0...-2...-2....0...-2...-4....1...-1
..2....3....2....1....2....1....0....0....1...-1...-1....2....1....0....3....1
..5....4....4....2....3....7....3....6....3....5....5....4....3....7....4....3
..9....6....5....4....8....8....7....7....6....7....9....5....7....8....7....8
CROSSREFS
Sequence in context: A297730 A360436 A124804 * A126386 A208635 A259715
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 23 2011
STATUS
approved