Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 30 2022 23:41:48
%S 0,0,0,786240,397543795824,3153491495915040,2897591335142535360,
%T 709217913680036905200,70921407068068519599840,
%U 3718329027062088400988544,119720148366778311215868480,2633253678249157711210367520,42653023518489941374251310800
%N Number of n-colorings of the Coxeter graph.
%C The Coxeter Graph is a nonhamiltonian cubic symmetric graph and has 28 vertices and 42 edges.
%C All terms are multiples of 336.
%H Alois P. Heinz, <a href="/A157993/b157993.txt">Table of n, a(n) for n = 0..1000</a>
%H Marc Timme, Frank van Bussel, Denny Fliegner, and Sebastian Stolzenberg, <a href="https://doi.org/10.1088/1367-2630/11/2/023001">Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions</a>, New Journal of Physics, Volume 11, February 2009.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CoxeterGraph.html">Coxeter Graph</a>
%H <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (29, -406, 3654, -23751, 118755, -475020, 1560780, -4292145, 10015005, -20030010, 34597290, -51895935, 67863915, -77558760, 77558760, -67863915, 51895935, -34597290, 20030010, -10015005, 4292145, -1560780, 475020, -118755, 23751, -3654, 406, -29, 1).
%F a(n) = n^28 -42*n^27 + ... (see Maple program).
%p a:= n-> n^28 -42*n^27 +861*n^26 -11480*n^25 +111930*n^24 -850668*n^23 +5245762*n^22 -26977443*n^21 +118014274*n^20 -445705967*n^19 +1469857872*n^18 -4270042980*n^17 +11001634164*n^16 -25266720456*n^15 +51908523754*n^14 -95589692821*n^13 +157862673577*n^12 -233517066853*n^11 +308423840605*n^10 -361701500512*n^9 +373419294214*n^8 -335133871598*n^7 +256750369239*n^6 -163506050813*n^5 +83144968151*n^4 -31635019987*n^3 +7989854148*n^2 -1000876932*n:
%p seq(a(n), n=0..30);
%t With[{poly = ChromaticPolynomial[GraphData["CoxeterGraph"]]}, Array[poly, 20]] (* _Eric W. Weisstein_, May 04 2022 *)
%K nonn,easy
%O 0,4
%A _Alois P. Heinz_, Mar 10 2009