login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210636
Riordan array ((1-x)/(1-2*x-x^2), x*(1+x)/(1-2*x-x^2)).
0
1, 1, 1, 3, 4, 1, 7, 13, 7, 1, 17, 40, 32, 10, 1, 41, 117, 124, 60, 13, 1, 99, 332, 437, 286, 97, 16, 1, 239, 921, 1447, 1193, 553, 143, 19, 1, 577, 2512, 4584, 4556, 2682, 952, 198, 22, 1, 1393, 6761, 14048, 16336, 11666, 5282, 1510, 262, 25, 1
OFFSET
0,4
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by (1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Product of A122542 and A007318 (Pascal's triangle) as lower triangular matrices .
FORMULA
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-x)/(1-2*x-y*x-x^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A001333(n), A104934(n), A122958(n), A122690(n), A091928(n) for x = -1, 0, 1, 2, 3, 4 respectively.
EXAMPLE
Triangle begins :
1
1, 1
3, 4, 1
7, 13, 7, 1
17, 40, 32, 10, 1
41, 117, 124, 60, 13, 1
99, 332, 437, 286, 97, 16, 1
239, 921, 1447, 1193, 553, 143, 19, 1
577, 2512, 4584, 4556, 2682, 952, 198, 22, 1
1393, 6761, 14048, 16336, 11666, 5282, 1510, 262, 25, 1
CROSSREFS
Cf. Columns :A001333, A119915, Diagonals : A000012, A016777, Antidiagonal sums : A077995
Sequence in context: A053707 A075052 A111516 * A116392 A324559 A174607
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Mar 26 2012
STATUS
approved