OFFSET
0,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,4).
FORMULA
a(n) = Sum_{k=0..n} 4^k*A122542(n,k).
G.f.: (1-x)/(1-5*x-4*x^2).
Lim_{n -> infinity} a(n+1)/a(n)-> (5+sqrt(41))/2 = 5.701562118716.
a(n) = 2^(n-1)*(2*Fibonacci(n+1, 5/2) - Fibonacci(n, 5/2)) = -(2/I)^(n-1)*( 2*I*ChebyshevU(n, 5*I/4) + ChebyshevU(n-1, 5*I/4)). - G. C. Greubel, Dec 26 2019
MAPLE
seq(coeff(series((1-x)/(1-5*x-4*x^2), x, n+1), x, n), n = 0..35); # G. C. Greubel, Dec 26 2019
MATHEMATICA
LinearRecurrence[{5, 4}, {1, 4}, 35] (* Harvey P. Dale, Apr 06 2012 *)
Table[2^(n-1)*(2*Fibonacci[n+1, 5/2] - Fibonacci[n, 5/2]), {n, 0, 35}] (* G. C. Greubel, Dec 26 2019 *)
PROG
(PARI) Vec((1-x)/(1-5*x-4*x^2)+O(x^35)) \\ Charles R Greathouse IV, Jan 17 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1-x)/(1-5*x-4*x^2) )); // G. C. Greubel, Dec 26 2019
(Sage)
def A122690_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-5*x-4*x^2) ).list()
A122690_list(35) # G. C. Greubel, Dec 26 2019
(GAP) a:=[1, 4];; for n in [3..35] do a[n]:=5*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Philippe Deléham, Sep 22 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved