login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122690
a(n) = 5*a(n-1) + 4*a(n-2) with a(0)=1, a(1)=4.
6
1, 4, 24, 136, 776, 4424, 25224, 143816, 819976, 4675144, 26655624, 151978696, 866515976, 4940494664, 28168537224, 160604664776, 915697472776, 5220906022984, 29767320006024, 169720224122056, 967670400634376
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 4^k*A122542(n,k).
G.f.: (1-x)/(1-5*x-4*x^2).
Lim_{n -> infinity} a(n+1)/a(n)-> (5+sqrt(41))/2 = 5.701562118716.
a(n) = 2^(n-1)*(2*Fibonacci(n+1, 5/2) - Fibonacci(n, 5/2)) = -(2/I)^(n-1)*( 2*I*ChebyshevU(n, 5*I/4) + ChebyshevU(n-1, 5*I/4)). - G. C. Greubel, Dec 26 2019
MAPLE
seq(coeff(series((1-x)/(1-5*x-4*x^2), x, n+1), x, n), n = 0..35); # G. C. Greubel, Dec 26 2019
MATHEMATICA
LinearRecurrence[{5, 4}, {1, 4}, 35] (* Harvey P. Dale, Apr 06 2012 *)
Table[2^(n-1)*(2*Fibonacci[n+1, 5/2] - Fibonacci[n, 5/2]), {n, 0, 35}] (* G. C. Greubel, Dec 26 2019 *)
PROG
(PARI) Vec((1-x)/(1-5*x-4*x^2)+O(x^35)) \\ Charles R Greathouse IV, Jan 17 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1-x)/(1-5*x-4*x^2) )); // G. C. Greubel, Dec 26 2019
(Sage)
def A122690_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-5*x-4*x^2) ).list()
A122690_list(35) # G. C. Greubel, Dec 26 2019
(GAP) a:=[1, 4];; for n in [3..35] do a[n]:=5*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
CROSSREFS
Cf. A015537.
Sequence in context: A057391 A071079 A153337 * A183512 A364277 A262376
KEYWORD
nonn,easy,less
AUTHOR
Philippe Deléham, Sep 22 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved