login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015537 Expansion of x/(1 - 5*x - 4*x^2). 14
0, 1, 5, 29, 165, 941, 5365, 30589, 174405, 994381, 5669525, 32325149, 184303845, 1050819821, 5991314485, 34159851709, 194764516485, 1110461989261, 6331368012245, 36098688018269, 205818912140325, 1173489312774701, 6690722212434805 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

First differences give A122690(n) = {1, 4, 24, 136, 776, 4424, 25224, ...}. Partial sums of a(n) are {0, 1, 6, 35, 200, ...} = (A123270(n) - 1)/8. - Alexander Adamchuk, Nov 03 2006

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 5's along the main diagonal, and 2's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011

Pisano period lengths:  1, 1, 8, 1, 4, 8, 48, 1, 24, 4, 40, 8, 42, 48, 8, 2, 72, 24, 360, 4, ... - R. J. Mathar, Aug 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Lucyna Trojnar-Spelina, Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.

Index entries for linear recurrences with constant coefficients, signature (5,4).

FORMULA

a(n) = 5*a(n-1) + 4*a(n-2).

a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*4^k*5^(n-2*k-1). - Paul Barry, Apr 23 2005

a(n) = Sum_{k=0..(n-1)} A122690(k). - Alexander Adamchuk, Nov 03 2006

a(n) = (1/41)*sqrt(41)*((5/2 + (1/2)*sqrt(41))^n - (5/2 - (1/2)*sqrt(41))^n), with n >= 0. - Paolo P. Lava, Jan 13 2009

a(n) = 2^(n-1)*Fibonacci(n, 5/2) = (2/i)^(n-1)*ChebyshevU(n-1, 5*i/4). - G. C. Greubel, Dec 26 2019

MAPLE

seq( simplify((2/I)^(n-1)*ChebyshevU(n-1, 5*I/4)), n=0..20); # G. C. Greubel, Dec 26 2019

MATHEMATICA

LinearRecurrence[{5, 4}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)

Table[2^(n-1)*Fibonacci[n, 5/2], {n, 0, 30}] (* G. C. Greubel, Dec 26 2019 *)

PROG

(Sage) [lucas_number1(n, 5, -4) for n in range(0, 22)] # Zerinvary Lajos, Apr 24 2009

(MAGMA) [n le 2 select n-1 else 5*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-5*x-4*x^2))) \\ G. C. Greubel, Jan 01 2018

(GAP) a:=[0, 1];; for n in [3..30] do a[n]:=5*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019

CROSSREFS

Cf. A001076, A006190, A007482, A015520, A015521, A015523, A015524, A015525, A015528, A015529, A015530, A015531, A015532, A015533, A015534, A015535, A015536, A015443, A015447, A030195, A053404, A057087, A083858, A085939, A090017, A091914, A099012, A122690, A123270, A180222, A180226.

Sequence in context: A272940 A146178 A272751 * A182017 A291017 A141812

Adjacent sequences:  A015534 A015535 A015536 * A015538 A015539 A015540

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 02:54 EST 2021. Contains 340301 sequences. (Running on oeis4.)