login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015524
a(n) = 3*a(n-1) + 7*a(n-2).
19
0, 1, 3, 16, 69, 319, 1440, 6553, 29739, 135088, 613437, 2785927, 12651840, 57457009, 260933907, 1185000784, 5381539701, 24439624591, 110989651680, 504046327177, 2289066543291, 10395523920112, 47210037563373
OFFSET
0,3
COMMENTS
Linear 2nd order recurrence.
FORMULA
From R. J. Mathar, Apr 21 2008: (Start)
O.g.f.: x/(1 - 3*x - 7*x^2).
a(n) = 14^n*(1/A^n -(-1)^n/B^n)/sqrt(37), where A = sqrt(37) - 3 = A010491 - 3 and B = sqrt(37) + 3 = A010491 + 3. (End)
a(n) = (7*(111+23*sqrt(37))*(1/2*(3+sqrt(37)))^n + (2553 + 431*sqrt(37)) * (1/2 (3-sqrt(37)))^n)/(518*(45+8*sqrt(37))). - Harvey P. Dale, Jul 04 2011
MATHEMATICA
a[n_]:=(MatrixPower[{{1, 3}, {1, -4}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{3, 7}, {0, 1}, 30] (* Harvey P. Dale, Jul 04 2011 *)
PROG
(Sage) [lucas_number1(n, 3, -7) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009
(Magma) [n le 2 select n-1 else 3*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
(PARI) x='x+O('x^30); concat([0], Vec(x/(1 - 3*x - 7*x^2))) \\ G. C. Greubel, Jan 01 2018
CROSSREFS
Sequence in context: A378406 A370248 A370274 * A012279 A037098 A316170
KEYWORD
nonn,easy
STATUS
approved