login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015525
Expansion of x/(1-3*x-8*x^2).
21
0, 1, 3, 17, 75, 361, 1683, 7937, 37275, 175321, 824163, 3875057, 18218475, 85655881, 402715443, 1893393377, 8901903675, 41852858041, 196773803523, 925144274897, 4349623252875, 20450023957801, 96147057896403
OFFSET
0,3
FORMULA
a(n) = 3*a(n-1) + 8*a(n-2).
a(n) = -16^n*(A^n-B^n)/sqrt(41) where A = -1/(3+sqrt(41)) and B = 1/(sqrt(41)-3). - R. J. Mathar, Apr 29 2008
a(n) = -(-8)^n * a(-n) for all n in Z. - Michael Somos, Mar 05 2020
EXAMPLE
G.f. = x + 3*x^2 + 17*x^3 + 75*x^4 + 361*x^5 + 1683*x^6 + 7937*x^7 + ... - Michael Somos, Mar 05 2020
MATHEMATICA
a[n_]:=(MatrixPower[{{1, 4}, {1, -4}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{3, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
a[ n_] := With[{m=n-1, t=Sqrt[-8]}, t^m ChebyshevU[m, -t 3/16]]; (* Michael Somos, Mar 05 2020 *)
PROG
(Sage) [lucas_number1(n, 3, -8) for n in range(0, 23)]# Zerinvary Lajos, Apr 22 2009
(Magma) [n le 2 select n-1 else 3*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3*x-8*x^2))) \\ G. C. Greubel, Jan 01 2017
(PARI) {a(n) = if( n<0, -(-8)^n * a(-n), polcoeff( x / (1 - 3*x - 8*x^2) + x * O(x^n), n))}; /* Michael Somos, Mar 05 2020 */
CROSSREFS
Sequence in context: A171875 A356390 A100233 * A062224 A217958 A093568
KEYWORD
nonn,easy
STATUS
approved