login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100233
a(n) = Lucas(3*n) - 1.
4
1, 3, 17, 75, 321, 1363, 5777, 24475, 103681, 439203, 1860497, 7881195, 33385281, 141422323, 599074577, 2537720635, 10749957121, 45537549123, 192900153617, 817138163595, 3461452808001, 14662949395603, 62113250390417, 263115950957275, 1114577054219521
OFFSET
0,2
COMMENTS
Main diagonal of triangle A100232.
FORMULA
a(n) = A014448(n) - 1.
a(n) = 4*a(n-1) + a(n-2) + 4 for n>1, with a(0)=1, a(1)=3.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-4*x-x^2)).
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 5*x^2) )^n. Cf. A016064. - Peter Bala, Jun 23 2015
From Colin Barker, Jun 02 2016: (Start)
a(n) = -1+(2-sqrt(5))^n+(2+sqrt(5))^n.
a(n) = 5*a(n-1)-3*a(n-2)-a(n-3) for n>2.
G.f.: (1-2*x+5*x^2) / ((1-x)*(1-4*x-x^2)).
(End)
MATHEMATICA
Table[LucasL[3*n] - 1, {n, 0, 50}] (* or *) LinearRecurrence[{5, -3, -1}, {1, 3, 17}, 30] (* G. C. Greubel, Dec 21 2017 *)
PROG
(PARI) a(n)=if(n==0, 1, n*polcoeff(log((1-x)/(1-4*x-x^2)+x*O(x^n)), n))
(PARI) Vec((1-2*x+5*x^2)/((1-x)*(1-4*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 02 2016
(Magma) I:=[1, 3, 17]; [n le 3 select I[n] else 5*Self(n-1) -3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 29 2004
EXTENSIONS
New definition from Ralf Stephan, Dec 01 2004
STATUS
approved