The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100231 G.f. A(x) satisfies: 5^n - 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (5+z)^n - (1+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n. 2
 1, 3, 4, -8, 0, 64, -192, -128, 2816, -7680, -13312, 157696, -352256, -1179648, 9748480, -16220160, -99614720, 630456320, -651427840, -8218214400, 41481666560, -13191086080, -667334737920, 2724661821440, 1460876083200, -53446942130176, 175607589634048, 286761410363392 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, if g.f. A(x) satisfies: m^n-b^n = Sum_{k=0..n} [x^k]A(x)^n, then A(x) also satisfies: (m+z)^n - (b+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z and A(x)=(1+(m-1)*x+sqrt(1+2*(m-2*b-1)*x+(m^2-2*m+4*b+1)*x^2))/2. LINKS Table of n, a(n) for n=0..27. FORMULA a(n)=-((4*n-6)*a(n-1)+20*(n-3)*a(n-2))/n for n>2, with a(0)=1, a(1)=3, a(3)=4. G.f.: A(x) = (1+4*x+sqrt(1+4*x+20*x^2))/2. EXAMPLE From the table of powers of A(x) (A100232), we see that 5^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n: A^1=[1,3],4,-8,0,64,-192,-128,... A^2=[1,6,17],8,-32,64,64,-896,... A^3=[1,9,39,75],12,-72,256,-384,... A^4=[1,12,70,220,321],16,-128,640,... A^5=[1,15,110,470,1165,1363],20,-200,... A^6=[1,18,159,852,2895,5922,5777],24,... PROG (PARI) a(n)=if(n==0, 1, (5^n-1-sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n+x*O(x^k), k)))/n) (PARI) a(n)=if(n==0, 1, if(n==1, 3, if(n==2, 4, -((4*n-6)*a(n-1)+20*(n-3)*a(n-2))/n))) (PARI) a(n)=polcoeff((1+4*x+sqrt(1+4*x+20*x^2+x^2*O(x^n)))/2, n) CROSSREFS Cf. A100232, A100233, A100228. Sequence in context: A131265 A042975 A270107 * A016609 A346411 A199618 Adjacent sequences: A100228 A100229 A100230 * A100232 A100233 A100234 KEYWORD sign AUTHOR Paul D. Hanna, Nov 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 14:11 EST 2024. Contains 370488 sequences. (Running on oeis4.)