login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346411 a(n) = (n!)^2 * Sum_{k=0..n-1} (-1)^k / ((n-k) * k!)^2. 1
0, 1, -3, 4, -8, 1, 353, 27224, 1871840, 147012849, 13684928021, 1514370713340, 197964773810648, 30300949591876913, 5380510834911767033, 1098630080602791984784, 255851291397441057781120, 67450889282916741495608737, 19994198644782014829579657837, 6623096362909598587714211804212 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = polylog(2,x) * BesselJ(0,2*sqrt(x)).

MATHEMATICA

Table[(n!)^2 Sum[(-1)^k/((n - k) k!)^2, {k, 0, n - 1}], {n, 0, 19}]

nmax = 19; CoefficientList[Series[PolyLog[2, x] BesselJ[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2

CROSSREFS

Cf. A002741, A073701, A336292, A340789, A346410.

Sequence in context: A270107 A100231 A016609 * A199618 A088745 A213922

Adjacent sequences: A346408 A346409 A346410 * A346412 A346413 A346414

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Jul 15 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 08:33 EDT 2023. Contains 361596 sequences. (Running on oeis4.)