login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346412
Triangular array read by rows: T(n,k) is the number of nilpotent n X n matrices over GF(2) having rank k, 0 <= k <= n-1, n >= 1.
1
1, 1, 3, 1, 21, 42, 1, 105, 1470, 2520, 1, 465, 32550, 390600, 624960, 1, 1953, 605430, 36325800, 406848960, 629959680, 1, 8001, 10417302, 2768025960, 155009453760, 1680102466560, 2560156139520, 1, 32385, 172741590, 192779614440, 47809344381120, 2590958018073600, 27636885526118400, 41781748196966400
OFFSET
1,3
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
EXAMPLE
Array begins
1;
1, 3;
1, 21, 42;
1, 105, 1470, 2520;
1, 465, 32550, 390600, 624960;
1, 1953, 605430, 36325800, 406848960, 629959680
T(2,0) = 1 because the zero matrix has rank 0.
T(2,1) = 3 because {{0,0},{1,0}}, {{0,1},{0,0}}, {{1,1},{1,1}} have rank 1.
MATHEMATICA
nn = 10; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] :=Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[
q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; A001037 = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
g[u_, v_] := Total[Map[v^(Total[#] - Length[#]) u^Total[#]/aut[1, #] &,
Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]]; Map[Select[#, # > 0 &] &, Drop[Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
Series[g[u, v], {u, 0, nn}], {u, v}], 1]] // Grid
CROSSREFS
Cf. A134057 (column k=1), A083402 (main diagonal), A053763 (row sums).
Sequence in context: A223549 A138354 A193632 * A346214 A190962 A010291
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jul 15 2021
STATUS
approved