login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138354
Central moment sequence of tr(A^4) in USp(4).
0
1, 0, 3, 1, 21, 26, 215, 498, 2821, 9040, 43695, 165375, 752785, 3101970, 13881803, 59837183, 267860685, 1184749704, 5337504263, 23996776941, 108964583121, 495544446410, 2267450194443, 10402298479276, 47926692348121
OFFSET
0,3
COMMENTS
Binomial transform of A018224.
If A is a random matrix in the compact group USp(4) (4 X 4 complex are unitary and symplectic), then a(n)=E[(tr(A^4)+1)^n] is the n-th central moment of the trace of A^4, since E[tr(A^4)] = -1 (see A018224).
LINKS
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
FORMULA
a(n) = (1/2)*Integral_{x=0..Pi,y=0..Pi}(2cos(4x)+2cos(4y)+1)^n*(2cos(x)-2cos(y))^2*(2/Pi*sin^2(x))*(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n} (-1)^i binomial(n,i)*A018224(i). [corrected by Jean-François Alcover, Aug 13 2018]
a(n) = (5*A201805(n) - A201805(n+1))/4. - Mark van Hoeij, Nov 29 2024
EXAMPLE
a(3) = 1 because E[(tr(A^4)+1)^3] = 1.
a(3) = 1*A018224(0) + 3*A018224(1) + 3*A018224(2) + 1*A018224(1) = 1*1 + 3*(-1) + 3*4 + 1*(-9) = 1.
MATHEMATICA
a18224[n_] := Binomial[n, Floor[n/2]]^2;
a[n_] := Sum[(-1)^i Binomial[n, i] a18224[i], {i, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 13 2018 *)
CROSSREFS
Cf. A018224.
Sequence in context: A136236 A113090 A223549 * A193632 A346412 A346214
KEYWORD
nonn
AUTHOR
Andrew V. Sutherland, Mar 16 2008, Mar 31 2008
STATUS
approved