login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138351
Central moment sequence of tr(A^2) in USp(4).
1
1, 0, 2, 1, 11, 16, 95, 232, 1085, 3460, 14820, 54275, 227095, 895688, 3756688, 15462293, 65586405, 277342336, 1192038266, 5136760581, 22357937431, 97730561480, 430177280197, 1901975209706, 8454151507801, 37734802709796
OFFSET
0,3
COMMENTS
If A is a random matrix in the compact group USp(4) (4 X 4 complex matrices which are unitary and symplectic), then a(n)=E[(tr(A^2)+1)^n] is the n-th central moment of the trace of A^2, since E[tr(A^2)] = -1 (see A138350).
LINKS
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, in Arithmetic, Geometry, Cryptography, and Coding Theory: International Conference, November 5-9, 2007, CIRM, Marseilles, France. Gilles Lachaud, Christophe Ritzenthaler, Michael A. Tsfasman, editors. 2009. (Contemporary Mathematics ; v.487)..
FORMULA
a(n) = (1/2)Integral_{x=0..Pi,y=0..Pi}(2cos(2x)+2cos(2y)+1)^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n} binomial(n,i)*A138350(i).
EXAMPLE
a(4) = 11 because E[((tr(A^2)+1)^4] = 11 for a random matrix A in USp(4).
a(4) = 1*A138350(0)+4*A138350(1)+6*A138350(2)+4*A138350(3)+1*A138350(4)
= 1*1 + 4*(-1) + 6*3 + 4*(-6) + 1*20 = 11.
MATHEMATICA
a126120[n_] := If[EvenQ[n], CatalanNumber[n/2], 0];
a138364[n_] := If[EvenQ[n], 0, Binomial[n, Floor[n/2]], 0];
a138350[n_] := a126120[n] a138364[n+1] - a138364[n] a126120[n+1];
a[n_] := Sum[Binomial[n, i] a138350[i], {i, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 13 2018 *)
CROSSREFS
Cf. A138350.
Sequence in context: A158354 A055459 A080958 * A120293 A063624 A101851
KEYWORD
nonn
AUTHOR
Andrew V. Sutherland, Mar 16 2008, Mar 31 2008
STATUS
approved