login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080958
a(n) = n!*(2/1 - 3/2 + 4/3 - ... + s*(n+1)/n), where s = (-1)^(n+1).
1
2, 1, 11, 14, 214, 444, 8868, 25584, 633456, 2342880, 69317280, 312888960, 10773578880, 57424792320, 2256224544000, 13869128448000, 612385401600000, 4264876094976000, 209080119919104000, 1627055289796608000
OFFSET
1,1
LINKS
FORMULA
a(n) = n!*Sum_{j=1..n} (-1)^(j+1)*(j+1)/j.
E.g.f.: (x+(x+1)*log(1+x))/(1-x^2). - Vladeta Jovovic, Mar 03 2003
Conjecture: -(n+1)*a(n+1) + a(n) + n^2*(n+2)*a(n-1) = 0. - R. J. Mathar, Sep 27 2012, corrected for offset 1 by Robert Israel, Dec 26 2018
Conjecture verified, using the differential equation (x^3-x)*g''(x) + (5*x^2-1)*g'(x) + (3*x+1)*g(x) + 2 = 0 satisfied by the e.g.f. - Robert Israel, Dec 26 2018
a(n) ~ n! * (log(2) + 1/2 - 1/2*(-1)^n). - Vaclav Kotesovec, Sep 29 2013
a(n) = n!*(log(2) + (n mod 2) - (-1)^n*LerchPhi(-1, 1, n+1)). - Peter Luschny, Dec 26 2018
MAPLE
f:= gfun:-rectoproc({-(n+1)*a(n+1) + a(n) + n^2*(n+2)*a(n-1)=0, a(1)=2, a(2)=1}, a(n), remember):
map(f, [$1..30]); # Robert Israel, Dec 26 2018
MATHEMATICA
Rest[CoefficientList[Series[(x+(x+1)*Log[1+x])/(1-x^2), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
a[n_] := n!(Log[2] + Boole[OddQ[n]] - (-1)^n LerchPhi[-1, 1, 1 + n]);
Table[a[n], {n, 1, 20}] (* Peter Luschny, Dec 26 2018 *)
CROSSREFS
Cf. A024167.
Sequence in context: A158352 A158354 A055459 * A138351 A120293 A063624
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 01 2003
STATUS
approved