OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-15).
FORMULA
a(n) = 5*a(n-1) + 4*3^(n-1).
a(n) = 3*5^n - 2*3^n.
G.f.: (1+x)/((1-3*x)*(1-5*x)). - Klaus Brockhaus, Nov 26 2009
From Mario C. Enriquez, Dec 08 2016: (Start)
a(n) = Sum_{k=0..n} A003948(n-k)*3^k = Sum_{k=0..n} (3^k * ceiling(Sum_{v=0..n-k} (5^v - 5^(v-2)))). (End)
a(n) = 8*a(n-1) - 15*a(n-2) for n > 1. - Wesley Ivan Hurt, Dec 08 2016
E.g.f.: exp(3*x)*(3*exp(2*x) - 2). - Stefano Spezia, Jul 23 2024
EXAMPLE
G.f. = 1 + 9*x + 57*x^2 + 321*x^3 + 1713*x^4 + 8889*x^5 + 45417*x^6 + 230001*x^7 + ...
MAPLE
MATHEMATICA
CoefficientList[Series[(1 + x)/((1 - 3*x) * (1 - 5*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 07 2012 *)
PROG
(Magma) binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >;
binomtf(binomtf(binomtf(binomtf(&cat[ [1, 5]: n in [1..11] ])))); // Klaus Brockhaus, Nov 26 2009
(Magma) [3*5^n - 2*3^n: n in [0..30]]; // Vincenzo Librandi, Dec 07 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 03 2003
EXTENSIONS
Definition corrected, edited by Klaus Brockhaus, Nov 26 2009
STATUS
approved