login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045635 Catafusenes (see references for precise definition). 0
0, 0, 1, 9, 57, 315, 1629, 8127, 39718, 191754, 919035, 4385799, 20879100, 99276840, 471848195, 2242864575, 10665998760, 50757180840, 241743946635, 1152434818755, 5499250360025, 26268118117731, 125602004765391 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The sequence without the initial 0's is the 3-fold convolution of A002212(n), (n=1,2,...). - Emeric Deutsch, Mar 13 2004

LINKS

Table of n, a(n) for n=1..23.

B. N. Cyvin et al., A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337.

S. J. Cyvin et al., Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.

FORMULA

G.f.: (zM)^3, where M = (1 - 3*z - sqrt(1 - 6*z + 5*z^2))/(2*z^2). - Emeric Deutsch, Mar 13 2004

MAPLE

Z:=(1-8*z+24*z^2-16*z^3-(1-6*z+8*z^2)*sqrt(1-6*z+5*z^2))/2: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=4..26); # Zerinvary Lajos, Jan 01 2007

CROSSREFS

Cf. A002212.

Sequence in context: A192054 A045720 A014916 * A026896 A080961 A163919

Adjacent sequences:  A045632 A045633 A045634 * A045636 A045637 A045638

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Emeric Deutsch, Mar 13 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 19:02 EST 2021. Contains 349424 sequences. (Running on oeis4.)