login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045636
Numbers of the form p^2 + q^2, with p and q primes.
26
8, 13, 18, 29, 34, 50, 53, 58, 74, 98, 125, 130, 146, 170, 173, 178, 194, 218, 242, 290, 293, 298, 314, 338, 365, 370, 386, 410, 458, 482, 530, 533, 538, 554, 578, 650, 698, 722, 818, 845, 850, 866, 890, 962, 965, 970, 986, 1010, 1058, 1082, 1130, 1202, 1250
OFFSET
1,1
COMMENTS
A045698(a(n)) > 0. - Reinhard Zumkeller, Jul 29 2012
All terms greater than 8 are of the form 8k+2 or 8k+5 (A047617). - Giuseppe Melfi, Oct 06 2022
EXAMPLE
18 belongs to the sequence because it can be written as 3^2 + 3^2.
MATHEMATICA
q=13; imax=Prime[q]^2; Select[Union[Flatten[Table[Prime[x]^2+Prime[y]^2, {x, q}, {y, x}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
With[{nn=60}, Take[Union[Total/@(Tuples[Prime[Range[nn]], 2]^2)], nn]] (* Harvey P. Dale, Jan 04 2014 *)
PROG
(PARI) list(lim)=my(p1=vector(primepi(sqrt(lim-4)), i, prime(i)^2), t, p2=List()); for(i=1, #p1, for(j=i, #p1, t=p1[i]+p1[j]; if(t>lim, break, listput(p2, t)))); vecsort(Vec(p2), , 8) \\ Charles R Greathouse IV, Jun 21 2012
(Haskell)
import Data.List (findIndices)
a045636 n = a045636_list !! (n-1)
a045636_list = findIndices (> 0) a045698_list
-- Reinhard Zumkeller, Jul 29 2012
(Python)
from sympy import primerange
def aupto(limit):
primes = list(primerange(2, int((limit-4)**.5)+2))
nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]]
return sorted(set(k for k in nums if k <= limit))
print(aupto(1251)) # Michael S. Branicky, Aug 13 2021
CROSSREFS
A214723 is a subsequence. Complement: A214879.
Cf. A214511 (least number having n orderless representations as p^2 + q^2).
Cf. A047617.
Sequence in context: A224251 A006619 A023487 * A214723 A022954 A364411
KEYWORD
nonn,nice
AUTHOR
STATUS
approved