|
|
A045636
|
|
Numbers of the form p^2 + q^2, with p and q primes.
|
|
23
|
|
|
8, 13, 18, 29, 34, 50, 53, 58, 74, 98, 125, 130, 146, 170, 173, 178, 194, 218, 242, 290, 293, 298, 314, 338, 365, 370, 386, 410, 458, 482, 530, 533, 538, 554, 578, 650, 698, 722, 818, 845, 850, 866, 890, 962, 965, 970, 986, 1010, 1058, 1082, 1130, 1202, 1250
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A045698(a(n)) > 0. - Reinhard Zumkeller, Jul 29 2012
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
Index entries for sequences related to sums of squares
|
|
EXAMPLE
|
18 belongs to the sequence because it can be written as 3^2 + 3^2.
|
|
MATHEMATICA
|
q=13; imax=Prime[q]^2; Select[Union[Flatten[Table[Prime[x]^2+Prime[y]^2, {x, q}, {y, x}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
With[{nn=60}, Take[Union[Total/@(Tuples[Prime[Range[nn]], 2]^2)], nn]] (* Harvey P. Dale, Jan 04 2014 *)
|
|
PROG
|
(PARI) list(lim)=my(p1=vector(primepi(sqrt(lim-4)), i, prime(i)^2), t, p2=List()); for(i=1, #p1, for(j=i, #p1, t=p1[i]+p1[j]; if(t>lim, break, listput(p2, t)))); vecsort(Vec(p2), , 8) \\ Charles R Greathouse IV, Jun 21 2012
(Haskell)
import Data.List (findIndices)
a045636 n = a045636_list !! (n-1)
a045636_list = findIndices (> 0) a045698_list
-- Reinhard Zumkeller, Jul 29 2012
(Python)
from sympy import primerange
def aupto(limit):
primes = list(primerange(2, int((limit-4)**.5)+2))
nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]]
return sorted(set(k for k in nums if k <= limit))
print(aupto(1251)) # Michael S. Branicky, Aug 13 2021
|
|
CROSSREFS
|
A214723 is a subsequence. Complement: A214879.
Cf. A214511 (least number having n orderless representations as p^2 + q^2).
Sequence in context: A224251 A006619 A023487 * A214723 A022954 A070130
Adjacent sequences: A045633 A045634 A045635 * A045637 A045638 A045639
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
Felice Russo
|
|
STATUS
|
approved
|
|
|
|