OFFSET
1,1
COMMENTS
A045698(a(n)) > 0. - Reinhard Zumkeller, Jul 29 2012
All terms greater than 8 are of the form 8k+2 or 8k+5 (A047617). - Giuseppe Melfi, Oct 06 2022
LINKS
EXAMPLE
18 belongs to the sequence because it can be written as 3^2 + 3^2.
MATHEMATICA
q=13; imax=Prime[q]^2; Select[Union[Flatten[Table[Prime[x]^2+Prime[y]^2, {x, q}, {y, x}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
With[{nn=60}, Take[Union[Total/@(Tuples[Prime[Range[nn]], 2]^2)], nn]] (* Harvey P. Dale, Jan 04 2014 *)
PROG
(PARI) list(lim)=my(p1=vector(primepi(sqrt(lim-4)), i, prime(i)^2), t, p2=List()); for(i=1, #p1, for(j=i, #p1, t=p1[i]+p1[j]; if(t>lim, break, listput(p2, t)))); vecsort(Vec(p2), , 8) \\ Charles R Greathouse IV, Jun 21 2012
(Haskell)
import Data.List (findIndices)
a045636 n = a045636_list !! (n-1)
a045636_list = findIndices (> 0) a045698_list
-- Reinhard Zumkeller, Jul 29 2012
(Python)
from sympy import primerange
def aupto(limit):
primes = list(primerange(2, int((limit-4)**.5)+2))
nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]]
return sorted(set(k for k in nums if k <= limit))
print(aupto(1251)) # Michael S. Branicky, Aug 13 2021
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved