

A045637


Primes of the form p^2 + 4, where p is prime.


20



13, 29, 53, 173, 293, 1373, 2213, 4493, 5333, 9413, 10613, 18773, 26573, 27893, 37253, 54293, 76733, 85853, 94253, 97973, 100493, 120413, 139133, 214373, 237173, 253013, 299213, 332933, 351653, 368453, 375773, 458333, 552053, 619373
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These are the only primes that are the sum of two primes squared. 11 = 3^2 + 2 is the only prime of the form p^2 + 2 because all primes greater than 3 can be written as p=6n1 or p=6n+1, which allows p^2+2 to be factored.  T. D. Noe, May 18 2007
Infinite under the Bunyakovsky conjecture.  Charles R Greathouse IV, Jul 04 2011
All terms > 29 are congruent to 53 mod 120.  Zak Seidov, Nov 06 2013


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000


FORMULA

a(n) = A062324(n)^2 + 4.  Zak Seidov, Nov 06 2013


EXAMPLE

29 belongs to the sequence because it equals 5^2 + 4.


MATHEMATICA

Select[Prime[ # ]^2+4&/@Range[140], PrimeQ]


PROG

(PARI) forprime(p=2, 1e4, if(isprime(t=p^2+4), print1(t", "))) \\ Charles R Greathouse IV, Jul 04 2011


CROSSREFS

The corresponding primes p are in A062324.
Subsequence of A005473 (and thus A185086).
Cf. A094473A094479.
Sequence in context: A090866 A098062 A094481 * A146743 A065546 A075636
Adjacent sequences: A045634 A045635 A045636 * A045638 A045639 A045640


KEYWORD

nonn,easy


AUTHOR

Felice Russo


EXTENSIONS

Edited by Dean Hickerson, Dec 10 2002


STATUS

approved



