login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094473
Smallest prime factor of 2^n+3^n.
20
5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 97, 5, 13, 5, 3041, 5, 13, 5, 41, 5, 13, 5, 17, 5, 13, 5, 97, 5, 13, 5, 1153, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 89, 5, 13, 5, 193, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 41, 5, 13, 5, 769, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5
OFFSET
1,1
COMMENTS
If n = 4*k+1 or 4*k+3 then 2^n+3^n is divisible by 5.
If n = 4*k+2 then 2^n+3^n is divisible by 13.
Case n = 4*k including especially n = 2^j cannot be discussed with elementary tools and primality of 2^n+3^n remains open.
a(n) = 17 for n == 8 (mod 16). - Bruno Berselli, Dec 23 2019
LINKS
FORMULA
a(n) = A020639(A007689(n)). - Antti Karttunen, Nov 01 2018
MATHEMATICA
mif[x_]:=Part[Flatten[FactorInteger[x]], 1] Table[mif[2^w+3^w], {w, 1, 75}]
FactorInteger[#][[1, 1]]&/@Table[2^n+3^n, {n, 80}] (* Harvey P. Dale, Mar 26 2019 *)
PROG
(PARI) a(n)=factor(2^n+3^n)[1, 1] \\ Charles R Greathouse IV, Apr 29 2015
(PARI) A094473(n) = { my(k=(2^n+3^n)); forprime(p=2, k, if(!(k%p), return(p))); }; \\ Antti Karttunen, Nov 01 2018
(GAP) List([1..80], n->Factors(2^n+3^n)[1]); # Muniru A Asiru, Nov 01 2018
(Magma) [Min(PrimeFactors(2^n+3^n)): n in[1..100]]; // Vincenzo Librandi, Dec 23 2019
(Magma) [PrimeFactors(2^n+3^n)[1]: n in[1..600]]; // Bruno Berselli, Dec 23 2019
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 02 2004
STATUS
approved