OFFSET
1,1
COMMENTS
If n = 4*k+1 or 4*k+3 then 2^n+3^n is divisible by 5.
If n = 4*k+2 then 2^n+3^n is divisible by 13.
Case n = 4*k including especially n = 2^j cannot be discussed with elementary tools and primality of 2^n+3^n remains open.
a(n) = 17 for n == 8 (mod 16). - _Bruno Berselli_, Dec 23 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..1023
MATHEMATICA
mif[x_]:=Part[Flatten[FactorInteger[x]], 1] Table[mif[2^w+3^w], {w, 1, 75}]
FactorInteger[#][[1, 1]]&/@Table[2^n+3^n, {n, 80}] (* _Harvey P. Dale_, Mar 26 2019 *)
PROG
(PARI) a(n)=factor(2^n+3^n)[1, 1] \\ _Charles R Greathouse IV_, Apr 29 2015
(PARI) A094473(n) = { my(k=(2^n+3^n)); forprime(p=2, k, if(!(k%p), return(p))); }; \\ _Antti Karttunen_, Nov 01 2018
(GAP) List([1..80], n->Factors(2^n+3^n)[1]); # _Muniru A Asiru_, Nov 01 2018
(Magma) [Min(PrimeFactors(2^n+3^n)): n in[1..100]]; // _Vincenzo Librandi_, Dec 23 2019
(Magma) [PrimeFactors(2^n+3^n)[1]: n in[1..600]]; // _Bruno Berselli_, Dec 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
_Labos Elemer_, Jun 02 2004
STATUS
approved