login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094494 Primes p such that 2^j+p^j are primes for j=0,2,4,8. 3
6203, 16067, 72367, 105653, 179743, 323903, 1005467, 1040113, 1276243, 1331527, 1582447, 1838297, 1894873, 2202433, 2314603, 2366993, 2369033, 2416943, 2533627, 2698697, 2804437, 2806613, 2823277, 2826337, 2851867, 2888693 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes of 2^j+p^j form are a generalization of Fermat-primes. 1^j is replaced by p^j. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094491.

LINKS

Robert Israel, Table of n, a(n) for n = 1..400

EXAMPLE

Conditions mean 2,p^2+4,16+p^4,256+p^8 are all primes.

MAPLE

p:= 2: count:= 0: Res:= NULL:

while count < 30 do

  p:= nextprime(p);

  if isprime(4+p^2) and isprime(16+p^4) and isprime(256+p^8) then

    count:= count+1;

    Res:= Res, p;

  fi

od:

Res; # Robert Israel, Jul 17 2018

MATHEMATICA

{ta=Table[0, {100}], u=1}; Do[s0=2; s2=4+Prime[j]^2; s2=16+Prime[j]^4; s8=256+Prime[j]^8 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s8], Print[{j, Prime[j]}]; ta[[u]]=Prime[j]; u=u+1], {j, 1, 1000000}]

Select[Prime[Range[210000]], AllTrue[Table[2^j+#^j, {j, {0, 2, 4, 8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 13 2017 *)

CROSSREFS

Cf. A082101, A094473-A094492.

Sequence in context: A255791 A186602 A031836 * A235277 A246889 A172629

Adjacent sequences:  A094491 A094492 A094493 * A094495 A094496 A094497

KEYWORD

nonn

AUTHOR

Labos Elemer, Jun 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 13:39 EDT 2021. Contains 345401 sequences. (Running on oeis4.)