The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094494 Primes p such that 2^j+p^j are primes for j=0,2,4,8. 3
 6203, 16067, 72367, 105653, 179743, 323903, 1005467, 1040113, 1276243, 1331527, 1582447, 1838297, 1894873, 2202433, 2314603, 2366993, 2369033, 2416943, 2533627, 2698697, 2804437, 2806613, 2823277, 2826337, 2851867, 2888693 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes of 2^j+p^j form are a generalization of Fermat-primes. 1^j is replaced by p^j. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094491. LINKS Robert Israel, Table of n, a(n) for n = 1..400 EXAMPLE Conditions mean 2,p^2+4,16+p^4,256+p^8 are all primes. MAPLE p:= 2: count:= 0: Res:= NULL: while count < 30 do p:= nextprime(p); if isprime(4+p^2) and isprime(16+p^4) and isprime(256+p^8) then count:= count+1; Res:= Res, p; fi od: Res; # Robert Israel, Jul 17 2018 MATHEMATICA {ta=Table[0, {100}], u=1}; Do[s0=2; s2=4+Prime[j]^2; s2=16+Prime[j]^4; s8=256+Prime[j]^8 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s8], Print[{j, Prime[j]}]; ta[[u]]=Prime[j]; u=u+1], {j, 1, 1000000}] Select[Prime[Range], AllTrue[Table[2^j+#^j, {j, {0, 2, 4, 8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 13 2017 *) CROSSREFS Cf. A082101, A094473-A094492. Sequence in context: A255791 A186602 A031836 * A235277 A246889 A172629 Adjacent sequences: A094491 A094492 A094493 * A094495 A094496 A094497 KEYWORD nonn AUTHOR Labos Elemer, Jun 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 8 08:32 EST 2023. Contains 360136 sequences. (Running on oeis4.)