

A094493


Primes p such that 2^j+p^j are primes for j=0,1,2,16.


0



43577, 84317, 93887, 108377, 124247, 346667, 379997, 431867, 461297, 579197, 681257, 819317, 863867, 889037, 1143047, 1146797, 1271027, 1306817, 1518707, 1775867, 1926647, 1948517, 2119937, 2177447, 2348807, 2491607, 2604557
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes of 2^j+p^j form are a generalization of Fermatprimes. 1^j is replaced by p^j. This is strongly supported by the observation that corresponding jexponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473A094491.


LINKS

Table of n, a(n) for n=1..27.


EXAMPLE

For j=0: 1+1=2 is prime; other conditions are:
because of p^1+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=65536+p^16.


MATHEMATICA

{ta=Table[0, {100}], u=1}; Do[s0=2; s1=2+Prime[j]^1; s2=4+Prime[j]^2; s16=65536+Prime[j]^16 If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s16], Print[{j, Prime[j]}]; ta[[u]]=Prime[j]; u=u+1], {j, 1, 1000000}]
Select[Prime[Range[2*10^5]], AllTrue[Table[2^k+#^k, {k, {0, 1, 2, 16}}], PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 05 2021 *)


CROSSREFS

Cf. A082101, A094473A094491.
Sequence in context: A233690 A205923 A251995 * A342580 A165479 A140931
Adjacent sequences: A094490 A094491 A094492 * A094494 A094495 A094496


KEYWORD

nonn,changed


AUTHOR

Labos Elemer, Jun 01 2004


STATUS

approved



