login
A337513
G.f. A(x) satisfies: A(x) = 1 - Sum_{k=1..4} (x * A(x))^k.
2
1, -1, 0, 1, 0, -1, -5, 13, 5, -43, 4, 98, 122, -638, -246, 2912, -537, -9419, -1648, 47005, 2243, -232237, 87988, 904267, -351692, -4123026, 1726126, 20257940, -14035151, -86846040, 73352891, 387126945, -358259621, -1853868355, 2081413376
OFFSET
0,7
FORMULA
G.f.: A(x) = (1/x) * Series_Reversion(x / (1 - x - x^2 - x^3 - x^4)).
MATHEMATICA
nmax = 34; A[_] = 0; Do[A[x_] = 1 - Sum[(x A[x])^k, {k, 1, 4}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 35; CoefficientList[(1/x) InverseSeries[Series[x/(1 - x - x^2 - x^3 - x^4), {x, 0, nmax}], x], x]
b[m_, r_, k_] := b[m, r, k] = If[m + r == 0, 1, Sum[b[m - j, r + j - 1, k], {j, 1, Min[1, m]}] - Sum[b[m + j - 1, r - j, k], {j, 1, Min[k, r]}]]; a[n_] := b[0, n, 4]; Table[a[n], {n, 0, 34}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 30 2020
STATUS
approved