login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337510
a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1, k-1) + T(n-1,k))^2.
0
1, 2, 6, 52, 3854, 21090612, 629815387162156, 561871511512925116799625359336, 446575758106416254441837050759254156476271759098752411181598
OFFSET
0,2
COMMENTS
Based on Pascal's triangle A007318 by additionally squaring the sum of each term generated. For example, in Pascal, n=3 gives 1,2,1. Here n=3 gives, 1^2, (1+1)^2, 1^2 = 1+4+1.
FORMULA
a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1,k-1) + T(n-1,k))^2; T(0,0)=1; T(n,-1):=0; T(n,k):=0, n < k.
EXAMPLE
1 = 1
1 + 1 = 2
1 + (1 + 1)^2 + 1 = 1 + 4 + 1 = 6
1 + (1 + 4)^2 + (4 + 1)^2 + 1 = 1 + 25 + 25 + 1 = 52
1 + (1 + 25)^2 + (25 + 25)^2 + (25 + 1)^2 + 1 = 1 + 676 + 2500 + 676 + 1 = 3854.
PROG
(Python)
def r(i):
t = [[0, 1, 0], [0, 1, 1, 0]]
for n in range(2, i+1):
t.append([0])
for k in range(1, n+2):
t[n].append((t[n-1][k-1] + t[n-1][k])**2)
t[n].append(0)
return(sum(t[i]))
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Glen Gilchrist, Aug 30 2020
STATUS
approved