Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jan 16 2025 20:35:58
%S 1,2,6,52,3854,21090612,629815387162156,
%T 561871511512925116799625359336,
%U 446575758106416254441837050759254156476271759098752411181598
%N a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1, k-1) + T(n-1,k))^2.
%C Based on Pascal's triangle A007318 by additionally squaring the sum of each term generated. For example, in Pascal, n=3 gives 1,2,1. Here n=3 gives, 1^2, (1+1)^2, 1^2 = 1+4+1.
%F a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1,k-1) + T(n-1,k))^2; T(0,0)=1; T(n,-1):=0; T(n,k):=0, n < k.
%e 1 = 1
%e 1 + 1 = 2
%e 1 + (1 + 1)^2 + 1 = 1 + 4 + 1 = 6
%e 1 + (1 + 4)^2 + (4 + 1)^2 + 1 = 1 + 25 + 25 + 1 = 52
%e 1 + (1 + 25)^2 + (25 + 25)^2 + (25 + 1)^2 + 1 = 1 + 676 + 2500 + 676 + 1 = 3854.
%o (Python)
%o def r(i):
%o t = [[0, 1, 0], [0, 1, 1, 0]]
%o for n in range(2, i+1):
%o t.append([0])
%o for k in range(1, n+2):
%o t[n].append((t[n-1][k-1] + t[n-1][k])**2)
%o t[n].append(0)
%o return(sum(t[i]))
%Y Cf. A004019, A327563, A007318.
%K easy,nonn,changed
%O 0,2
%A _Glen Gilchrist_, Aug 30 2020