login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262046
Number of ordered partitions of [n] such that at least two adjacent parts have the same size.
15
0, 0, 2, 6, 54, 460, 3890, 42364, 512806, 6698724, 98496252, 1585046584, 27568171818, 520043947020, 10550553510016, 228796551051436, 5291441028244966, 129967582592816500, 3377869204044947060, 92652519380506887784, 2674716530794339146244
OFFSET
0,3
COMMENTS
All terms are even.
LINKS
FORMULA
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Nov 27 2017
MAPLE
g:= proc(n) option remember; `if`(n<2, 1,
add(binomial(n, k)*g(k), k=0..n-1))
end:
b:= proc(n, i) option remember; `if`(n=0, 0, add(
`if`(i=j, g(n-j), b(n-j, j))*binomial(n, j), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
MATHEMATICA
g[n_] := g[n] = If[n<2, 1, Sum[Binomial[n, k]*g[k], {k, 0, n-1}]]; b[n_, i_] := b[n, i] = If[n==0, 0, Sum[If[i==j, g[n-j], b[n-j, j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 09 2015
STATUS
approved