login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262045 Irregular triangle read by rows in which row n lists the elements of row n of A249223 and then the elements of the same row in reverse order. 17
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,19

COMMENTS

The n-th row of the triangle has length 2*A003056(n).

This sequence extends A249223 in the same manner as A237593 extends A237591.

The entries in the n-th row of the triangle are the widths of the regions between the (n-1)-st and n-th Dyck paths for the symmetric representation of sigma(n) with each column representing the corresponding leg of the n-th path.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..3200 [First 150 rows, based on G. C. Greubel's b-file for A249223}

FORMULA

T(n, k) = T(n, 2*A003056(n) + 1 - k) = A249223(n, k), for 1 <= n and 1 <= k <= A003056(n).

EXAMPLE

n\k 1   2   3   4   5   6   7   8   9   10

1   1   1

2   1   1

3   1   0   0   1

4   1   1   1   1

5   1   0   0   1

6   1   1   2   2   1   1

7   1   0   0   0   0   1

8   1   1   1   1   1   1

9   1   0   1   1   0   1

10  1   1   1   0   0   1   1   1

11  1   0   0   0   0   0   0   1

12  1   1   2   2   2   2   1   1

13  1   0   0   0   0   0   0   1

14  1   1   1   0   0   1   1   1

15  1   0   1   1   2   2   1   1   0   1

16  1   1   1   1   1   1   1   1   1   1

17  1   0   0   0   0   0   0   0   0   1

18  1   1   2   1   1   1   1   2   1   1

19  1   0   0   0   0   0   0   0   0   1

20  1   1   1   1   2   2   1   1   1   1

...

The triangle shows that the region between a Dyck path for n and n-1 has width 1 if n is a power of 2. For n a prime the region is a horizontal rectangle of width (height) 1 and the vertical rectangle of width 1 which is its reflection. The Dyck paths and regions are shown below for n = 1..5 (see the A237593 example for n = 1..28):

   _ _ _

5 |_ _ _|

4 |_ _  |_ _

3 |_ _|_  | |

2 |_  | | | |

1 |_|_|_|_|_|

MATHEMATICA

(* functions a237048[ ] and row[ ] are defined in A237048 *)

f[n_] :=Drop[FoldList[Plus, 0, Map[(-1)^(#+1)&, Range[row[n]]] a237048[n]], 1]

a262045[n_]:=Join[f[n], Reverse[f[n]]]

Flatten[Map[a262045, Range[16]]](* data *)

CROSSREFS

Cf. A000203, A003056, A196020, A236104, A237048, A237270, A237271, A237591, A237593, A249223, A262048.

Sequence in context: A261817 A123550 A320638 * A263087 A204433 A004578

Adjacent sequences:  A262042 A262043 A262044 * A262046 A262047 A262048

KEYWORD

nonn,tabf

AUTHOR

Hartmut F. W. Hoft, Sep 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 11:26 EDT 2021. Contains 343064 sequences. (Running on oeis4.)