login
A204433
Symmetric matrix: f(i,j) = (2*i + 2*j + 2) mod 3, by antidiagonals.
2
0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,2
COMMENTS
A block matrix over {0,1,2}. See A204263 for a guide to related matrices and permanents.
EXAMPLE
Northwest corner:
0 2 1 0 2 1
2 1 0 2 1 0
1 0 2 1 0 2
0 2 1 0 2 1
2 1 0 2 1 0
1 0 2 1 0 2
MATHEMATICA
f[i_, j_] := Mod[2 i + 2 j + 2, 3];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 15 2012
EXTENSIONS
Definition corrected by Georg Fischer, Oct 25 2021
STATUS
approved