OFFSET
1,18
LINKS
Alois P. Heinz, Rows n = 1..200, flattened
FORMULA
T(n,n) = T(n,1) = 1, representing partitions into the trivial divisors.
EXAMPLE
The triangle starts
1
1 1
1 0 1
1 1 1 1
1 0 0 0 1
1 1 2 2 1 1
1 0 0 0 0 0 1
1 1 1 2 2 1 1 1
1 0 1 0 1 0 1 0 1
1 1 0 1 2 2 1 1 1 1
1 0 0 0 0 0 0 0 0 0 1
1 1 3 7 8 8 6 4 3 2 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 1 1 2 2 1 1 1 1 1 1
1 0 1 0 3 0 3 0 2 0 2 0 1 0 1
1 1 1 2 3 4 4 4 4 3 2 2 2 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 2 3 6 8 9 10 9 8 6 5 4 3 2 2 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 3 6 8 10 10 9 9 8 6 5 4 3 3 2 1 1 1
1 0 1 0 1 0 3 0 3 0 2 0 2 0 2 0 1 0 1 0 1
1 1 0 0 0 0 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 3 9 20 33 44 50 51 48 42 36 29 23 18 14 11 8 6 4 3 2 1 1
MAPLE
A320638 := proc(n, noprts)
local a, p, w, el ;
a := 0 ;
for p in combinat[partition](n) do
if nops(p) = noprts then
w := true ;
for el in p do
if modp(n, el) <> 0 then
w := false;
break;
end if;
end do:
if w then
a := a+1 ;
end if;
end if ;
end do:
a ;
end proc:
seq(seq(A320638(n, k), k=1..n), n=1..13) ;
# second Maple program:
T:= proc(n) option remember; local b, l;
l, b:= numtheory[divisors](n),
proc(m, i) option remember; expand(`if`(m=0, 1,
`if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, x*b(m-l[i], i)))))
end; (p-> seq(coeff(p, x, i), i=1..n))(b(n, nops(l)))
end:
seq(T(n), n=1..20); # Alois P. Heinz, Nov 08 2023
MATHEMATICA
T[n_, k_] := IntegerPartitions[n, {k}, Divisors[n]] // Length;
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 08 2023 *)
CROSSREFS
AUTHOR
R. J. Mathar, Oct 18 2018
STATUS
approved