|
|
A261817
|
|
Hankel determinants of order n for the sequence A189718.
|
|
1
|
|
|
0, -1, 1, 2, 2, 1, -1, 0, 16, -3, -87, -242, 678, -439, -3620, -3961, 4334, -95, 95, 4524, 54001, 64350, -87309, -937766, 17314434, -542208643, 3200800363, 3953925422, -4558246642, -15110328113
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The Hankel determinant of order n of a sequence (s_n) is the determinant of the n X n matrix where the first row is [s_0, s_1, ..., s_{n-1}] and successive rows are shifted-by-one "windows" of size n into the sequence (so the last row is [s_{n-1}, ..., s_{2n-2}]).
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..500
Min Niu and Miaomiao Li, On the irrationality exponent of the generating function for a class of integer sequences, Chaos, Solitons and Fractals 81 (2015) 203-207.
|
|
MAPLE
|
A189718:= [0]:
for iter from 1 to 5 do A189718:= subs([0 = (0, 1, 1), 1 = (1, 0, 0)], A189718) od:
seq(LinearAlgebra:-Determinant(Matrix(n, n, (i, j) -> A189718[i+j-1])), n = 1 .. (3^5+1)/2); # Robert Israel, Nov 20 2015
|
|
CROSSREFS
|
Cf. A189718.
Sequence in context: A144157 A321400 A004562 * A123550 A320638 A262045
Adjacent sequences: A261814 A261815 A261816 * A261818 A261819 A261820
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Jeffrey Shallit, Nov 19 2015
|
|
STATUS
|
approved
|
|
|
|