OFFSET
1,2
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..100
EXAMPLE
As a symmetric triangle:
......1
.....313
....93139
...3931393
.11393139311
1113931393111
MATHEMATICA
s = {1}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Sep 17 2015
STATUS
approved