%I #15 Nov 20 2015 03:29:40
%S 0,-1,1,2,2,1,-1,0,16,-3,-87,-242,678,-439,-3620,-3961,4334,-95,95,
%T 4524,54001,64350,-87309,-937766,17314434,-542208643,3200800363,
%U 3953925422,-4558246642,-15110328113
%N Hankel determinants of order n for the sequence A189718.
%C The Hankel determinant of order n of a sequence (s_n) is the determinant of the n X n matrix where the first row is [s_0, s_1, ..., s_{n-1}] and successive rows are shifted-by-one "windows" of size n into the sequence (so the last row is [s_{n-1}, ..., s_{2n-2}]).
%H Robert Israel, <a href="/A261817/b261817.txt">Table of n, a(n) for n = 1..500</a>
%H Min Niu and Miaomiao Li, <a href="http://dx.doi.org/10.1016/j.chaos.2015.09.020">On the irrationality exponent of the generating function for a class of integer sequences</a>, Chaos, Solitons and Fractals 81 (2015) 203-207.
%p A189718:= [0]:
%p for iter from 1 to 5 do A189718:= subs([0 = (0,1,1), 1 = (1,0,0)], A189718) od:
%p seq(LinearAlgebra:-Determinant(Matrix(n,n,(i,j) -> A189718[i+j-1])), n = 1 .. (3^5+1)/2); # _Robert Israel_, Nov 20 2015
%Y Cf. A189718.
%K sign
%O 1,4
%A _Jeffrey Shallit_, Nov 19 2015