This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189718 Fixed point of the morphism 0->011, 1->100. 9
 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS This is a kind of "Thue-Morse-Morse" construction (cf. A010060)! Start with A_0 = 0, then extend by setting B_k = complement of A_k and A_{k+1} = A_k B_k B_k. Sequence is limit of A_k as k -> infinity. Thus A_0 = 0; A_1 = 0,1,1; A_2 = 0,1,1,1,0,0,1,0,0; A_3 = 0,1,1,1,0,0,1,0,0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1; - N. J. A. Sloane, Mar 04 2016 LINKS Chai Wah Wu, Table of n, a(n) for n = 0..19682 FORMULA a(3k-2)=a(k), a(3k-1)=1-a(k), a(3k)=1-a(k) for k>=1, a(0)=0. EXAMPLE 0->011->011100100-> MATHEMATICA t = Nest[Flatten[# /. {0->{0, 1, 1}, 1->{1, 0, 0}}] &, {0}, 5] (*A189718*) f[n_] := t[[n]] Flatten[Position[t, 0]] (*A189719*) Flatten[Position[t, 1]] (*A189720*) s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0; Table[s[n], {n, 1, 120}] (*A189721*) PROG (Python) A189718_list = [0] for _ in range(9):     A189718_list += [1-d for d in A189718_list]*2 # Chai Wah Wu, Mar 04 2016 CROSSREFS Cf. A010060, A189628, A189719, A189720, A189721, A269723. Sequence in context: A288858 A190897 A309218 * A054638 A074322 A284935 Adjacent sequences:  A189715 A189716 A189717 * A189719 A189720 A189721 KEYWORD nonn AUTHOR Clark Kimberling, Apr 26 2011 EXTENSIONS Offset 0 to match A010060 and A269723 by Chai Wah Wu, Mar 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 08:09 EDT 2019. Contains 326172 sequences. (Running on oeis4.)