login
A189715
Numbers k such that A156595(k-1) = 0; complement of A189716.
10
1, 4, 6, 7, 9, 10, 13, 15, 16, 19, 22, 24, 25, 28, 31, 33, 34, 36, 37, 40, 42, 43, 46, 49, 51, 52, 54, 55, 58, 60, 61, 63, 64, 67, 69, 70, 73, 76, 78, 79, 81, 82, 85, 87, 88, 90, 91, 94, 96, 97, 100, 103, 105, 106, 109, 112, 114, 115, 117, 118, 121, 123, 124, 127, 130, 132, 133, 135, 136, 139, 141, 142, 144, 145, 148, 150, 151, 154, 157, 159
OFFSET
1,2
COMMENTS
See A156595.
Numbers whose squarefree part is congruent modulo 9 to 1, 4, 6 or 7. - Peter Munn, May 17 2020
The asymptotic density of this sequence is 1/2. - Amiram Eldar, Mar 08 2021
LINKS
MATHEMATICA
t = Nest[Flatten[# /. {0->{0, 1, 1}, 1->{0, 1, 0}}] &, {0}, 5] (*A156595*)
f[n_] := t[[n]]
Flatten[Position[t, 0]] (*A189715*)
Flatten[Position[t, 1]] (*A189716*)
s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0;
Table[s[n], {n, 1, 120}] (*A189717*)
f[p_, e_] := (p^Mod[e, 2]); sqfpart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[160], MemberQ[{1, 4, 6, 7}, Mod[sqfpart[#], 9]] &] (* Amiram Eldar, Mar 08 2021 *)
PROG
(Python)
from sympy import integer_log
def A189715(n):
def f(x): return n+x-sum(((m:=x//9**i)-1)//9+(m-4)//9+(m-6)//9+(m-7)//9+4 for i in range(integer_log(x, 9)[0]+1))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Feb 15 2025
CROSSREFS
Union of A055040 and A055047.
Sequence in context: A080746 A246362 A069909 * A101993 A370267 A002481
KEYWORD
nonn,changed
AUTHOR
Clark Kimberling, Apr 26 2011
EXTENSIONS
Name enhanced by Peter Munn, May 17 2020
STATUS
approved