OFFSET
1,2
COMMENTS
See A156595.
Numbers whose squarefree part is congruent modulo 9 to 1, 4, 6 or 7. - Peter Munn, May 17 2020
The asymptotic density of this sequence is 1/2. - Amiram Eldar, Mar 08 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
MATHEMATICA
t = Nest[Flatten[# /. {0->{0, 1, 1}, 1->{0, 1, 0}}] &, {0}, 5] (*A156595*)
f[n_] := t[[n]]
Flatten[Position[t, 0]] (*A189715*)
Flatten[Position[t, 1]] (*A189716*)
s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0;
Table[s[n], {n, 1, 120}] (*A189717*)
f[p_, e_] := (p^Mod[e, 2]); sqfpart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[160], MemberQ[{1, 4, 6, 7}, Mod[sqfpart[#], 9]] &] (* Amiram Eldar, Mar 08 2021 *)
PROG
(Python)
from sympy import integer_log
def A189715(n):
def f(x): return n+x-sum(((m:=x//9**i)-1)//9+(m-4)//9+(m-6)//9+(m-7)//9+4 for i in range(integer_log(x, 9)[0]+1))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Feb 15 2025
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Clark Kimberling, Apr 26 2011
EXTENSIONS
Name enhanced by Peter Munn, May 17 2020
STATUS
approved