login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055040
Numbers of the form 3^(2i+1)*(3*j+2).
7
6, 15, 24, 33, 42, 51, 54, 60, 69, 78, 87, 96, 105, 114, 123, 132, 135, 141, 150, 159, 168, 177, 186, 195, 204, 213, 216, 222, 231, 240, 249, 258, 267, 276, 285, 294, 297, 303, 312, 321, 330, 339, 348, 357, 366, 375, 378, 384, 393, 402, 411
OFFSET
1,1
COMMENTS
Numbers not of the form x^2+y^2+3z^2.
Numbers whose squarefree part is congruent to 6 modulo 9. - Peter Munn, May 17 2020
The asymptotic density of this sequence is 1/8. - Amiram Eldar, Mar 08 2021
LINKS
L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
FORMULA
G.f.: [x(x+2)(x^2+x+1)(x^7+x^3+1)]/(x^11-x^10-x+1) (conjectured).
MATHEMATICA
max = 500; Select[ Union[ Flatten[ Table[3^(2*i + 1)*(3*j + 2), {i, 0, Ceiling[ Log[max/6]/Log[9]]}, {j, 0, Ceiling[(max/9^i - 6)/9]}]]], # <= max &] (* Jean-François Alcover, Oct 13 2011 *)
PROG
(Haskell)
a055040 n = a055040_list !! (n-1)
a055040_list = map (* 3) a055048_list
-- Reinhard Zumkeller, Apr 07 2012
CROSSREFS
Equals 3*A055048(n).
Intersection of A145204 and A189715.
Complement of A055041 with respect to A145204\{0}.
Complement of A055047 with respect to A189715.
Cf. A007913.
Sequence in context: A227229 A274319 A043477 * A017233 A122709 A052220
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Jun 01 2000
STATUS
approved