The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122709 a(0)=1; thereafter a(n) = 9*n - 3. 5
 1, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Self-convolution of A122553. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA a(0)=1, a(n) = 9*n - 3 = A008591(n) - 3 for n > 0. a(n) = 2*a(n-1) - a(n-2) for n > 2; a(0)=1, a(1)=6, a(2)=15. a(n) = a(n-1) + 9 for n > 1; a(0)=1, a(1)=6. G.f.: ((1 + 2*x)/(1 - x))^2. Equals binomial transform of [1, 5, 4, -4, 4, -4, 4, ...]. - Gary W. Adamson, Dec 10 2007 a(n) = A017233(n-1) for n > 0. - Georg Fischer, Oct 21 2018 E.g.f.: exp(x)*(9*x - 3) + 4. - Stefano Spezia, Mar 07 2023 MAPLE seq(coeff(series(((1+2*x)/(1-x))^2, x, n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 21 2018 MATHEMATICA Join[{1}, LinearRecurrence[{2, -1}, {6, 15}, 60]] (* Harvey P. Dale, Jun 12 2012 *) PROG (PARI) a(n)=max(9*n-3, 1) \\ Charles R Greathouse IV, Jan 17 2012 (PARI) Vec((1 + 2*x)^2 / (1 - x)^2 + O(x^100)) \\ Colin Barker, Jan 22 2018 (GAP) a:=[6, 15];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; Concatenation([1], a); # Muniru A Asiru, Oct 21 2018 CROSSREFS Cf. A017233 (9n+6), A008591, A122553. Sequence in context: A043477 A055040 A017233 * A052220 A217747 A341007 Adjacent sequences: A122706 A122707 A122708 * A122710 A122711 A122712 KEYWORD nonn,easy AUTHOR Philippe Deléham, Sep 23 2006 EXTENSIONS Edited by N. J. A. Sloane, Jan 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 10:40 EST 2023. Contains 367589 sequences. (Running on oeis4.)