login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227229
Expansion of (psi(q)^3 / psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function.
2
1, 6, 15, 24, 33, 36, 33, 48, 69, 78, 90, 72, 51, 84, 120, 144, 141, 108, 87, 120, 198, 192, 180, 144, 87, 186, 210, 240, 264, 180, 198, 192, 285, 288, 270, 288, 105, 228, 300, 336, 414, 252, 264, 264, 396, 468, 360, 288, 159, 342, 465, 432, 462, 324, 249
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 8 and 32 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
FORMULA
Expansion of (a(q) + a(q^2))^2 / 4 in powers of q where a() is a cubic AGM theta function.
Expansion of (b(q^2)^2 / b(q))^2 in powers of q where b() is a cubic AGM theta function.
Expansion of (eta(q^3) * eta(q^2)^6 / (eta(q)^3 * eta(q^6)^2))^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (27/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227226.
Convolution square of A107760.
Euler transform of period 6 sequence [6, -6, 4, -6, 6, -4, ...].
EXAMPLE
G.f. = 1 + 6*q + 15*q^2 + 24*q^3 + 33*q^4 + 36*q^5 + 33*q^6 + 48*q^7 + 69*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3] QPochhammer[ q^2]^6 / (QPochhammer[q]^3 QPochhammer[q^6]^2))^2, {q, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^6 / EllipticTheta[ 2, 0, q^3]^2/16, {q, 0, 2 n}];
a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ {2, 3/2, 2, 3/2, 2, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]];
a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ {2, 1, 2, 1, 2, -8}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^6 * eta(x^3 + A) / (eta(x + A)^3 * eta(x^6 + A)^2))^2, n))};
(Sage) A = ModularForms( Gamma0(6), 2, prec=50) . basis(); A[0] + 6*A[1] + 15*A[2];
(Magma) A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] + 6*A[2] + 15*A[3];
CROSSREFS
Sequence in context: A238905 A187918 A190747 * A274319 A043477 A055040
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 19 2013
STATUS
approved