login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227227
Numbers k such that k*sum_of_digits(k) is a perfect cube.
1
0, 1, 8, 81, 125, 512, 1000, 1331, 2592, 6400, 8000, 10125, 19683, 20736, 34300, 35937, 36125, 46656, 59319, 74088, 81000, 123823, 125000, 157464, 185193, 268912, 279936, 328509, 373248, 421875, 431244, 469567, 474552, 481474, 512000, 592704, 658503, 795906
OFFSET
1,3
EXAMPLE
512*(5+1+2) = 4096 = 16^3. Hence, 512 is a term of the sequence.
MATHEMATICA
Select[Range@ 1000000, IntegerQ@ Power[# Plus @@ IntegerDigits@ #, 1/3] == True &] (* Michael De Vlieger, Mar 23 2015 *)
PROG
(Python)
def DS(n):
return sum(int(i) for i in str(n))
def a(n):
k = 0
nDSn = n * DS(n)
while k <= n:
if k**3 == nDSn:
return True
if k**3 > nDSn:
return False
k += 1
[n for n in range(10**5) if a(n)]
# Simplified by Derek Orr, Mar 22 2015
(Sage)
n=100000 # change n for more terms
[x for x in [0..n] if floor((x*sum(Integer(x).digits(base=10)))^(1/3))==(x*sum(Integer(x).digits(base=10)))^(1/3)] # Tom Edgar, Sep 21 2013
(PARI) for(n=0, 10^6, if((n==0) || ispower(n*sumdigits(n), 3), print1(n, ", "))) \\ Derek Orr, Mar 22 2015
CROSSREFS
Cf. A227224.
Sequence in context: A274855 A301939 A302417 * A303184 A302325 A303018
KEYWORD
nonn,base,easy
AUTHOR
Derek Orr, Sep 19 2013
STATUS
approved