This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204263 Symmetric matrix: f(i,j)=(i+j mod 3), by antidiagonals. 22
 2, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A block matrix over {0,1,2}.  In the following guide to related matrices and permanents, Duvwxyz represents the matrix remaining after row 1 of the matrix Auvwxyz is deleted: Matrix................Permanent of n-th submatrix A204263=D204421.......A204265 A204267=D204263.......A204268 A204421=D204267.......A179079 A204423=D204425.......A204424 A204425=D204427.......A204426 A204427=D204423.......A204428 A204429=D204431.......A204430 A204431=D204433.......A204432 A204433=D204429.......A204434 LINKS G. C. Greubel, Table of n, a(n) for the first 100 antidiagonals, flattened EXAMPLE Northwest corner: 2 0 1 2 0 1 0 1 2 0 1 2 1 2 0 1 2 0 2 0 1 2 0 1 0 1 2 0 1 2 1 2 0 1 2 0 MATHEMATICA f[i_, j_] := Mod[i + j, 3]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i],   {n, 1, 14}, {i, 1, n}]]      (* A204263 *) Permanent[m_] :=   With[{a = Array[x, Length[m]]},    Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 22}]    (* A204265 *) CROSSREFS Cf. A204265. Sequence in context: A124764 A151899 A268374 * A228347 A209314 A079632 Adjacent sequences:  A204260 A204261 A204262 * A204264 A204265 A204266 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Jan 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 06:29 EDT 2018. Contains 301100 sequences. (Running on oeis4.)