OFFSET
1,3
COMMENTS
EXAMPLE
----------------------------------------------------------
. Diagram Triangle
Compositions of of compositions (rows)
of 5 regions and regions (columns)
----------------------------------------------------------
. _ _ _ _ _
5 |_ | 5
1+4 |_|_ | 1 4
2+3 |_ | | 2 0 3
1+1+3 |_|_|_ | 1 1 0 3
3+2 |_ | | 3 0 0 0 2
1+2+2 |_|_ | | 1 2 0 0 0 2
2+1+2 |_ | | | 2 0 1 0 0 0 2
1+1+1+2 |_|_|_|_ | 1 1 0 1 0 0 0 2
4+1 |_ | | 4 0 0 0 0 0 0 0 1
1+3+1 |_|_ | | 1 3 0 0 0 0 0 0 0 1
2+2+1 |_ | | | 2 0 2 0 0 0 0 0 0 0 1
1+1+2+1 |_|_|_ | | 1 1 0 2 0 0 0 0 0 0 0 1
3+1+1 |_ | | | 3 0 0 0 1 0 0 0 0 0 0 0 1
1+2+1+1 |_|_ | | | 1 2 0 0 0 1 0 0 0 0 0 0 0 1
2+1+1+1 |_ | | | | 2 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1+1+1+1+1 |_|_|_|_|_| 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
.
For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th column are the parts of the n-th composition of k, with compositions in colexicographic order.
Triangle begins:
1;
1,2;
0,0,1;
1,1,2,3;
0,0,0,0,1;
0,0,0,0,1,2;
0,0,0,0,0,0,1;
1,1,1,1,2,2,3,4;
0,0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0,1,2;
0,0,0,0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0,1,1,2,3;
0,0,0,0,0,0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0,0,0,0,0,1,2;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
...
CROSSREFS
Mirror of A228348. Column 1 is A036987. Also column 1 gives A209229, n >= 1. Right border gives A001511. Positive terms give A228349.
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Aug 26 2013
STATUS
approved