login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065120
Highest power of 2 dividing A057335(n).
64
0, 1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,3
COMMENTS
a(n) appears on row 1 of the array illustrated in A066099.
Except for initial zero, ordinal transform of A062050. After initial zero, n-th chunk consists of n, one n-1, two (n-2)'s, ..., 2^(k-1) (n-k)'s, ..., 2^(n-1) 1's. - Franklin T. Adams-Watters, Sep 11 2006
Zero together with a triangle read by rows in which row j lists the first 2^(j-1) terms of A001511 in nonincreasing order, j >= 1, see example. Also row j lists the first parts, in nonincreasing order, of the compositions of j. - Omar E. Pol, Sep 11 2013
The n-th row represents the frequency distribution of 1, 2, 3, ..., 2^(n-1) in the first 2^n - 1 terms of A003602. - Gary W. Adamson, Jun 10 2021
FORMULA
From Daniel Starodubtsev, Aug 05 2021: (Start)
a(n) = A001511(A059894(n) - 2^A000523(n) + 1) for n > 0 with a(0) = 0.
a(2n+1) = a(n), a(2n) = a(n) + A036987(n-1) for n > 1 with a(0) = 0, a(1) = 1. (End)
EXAMPLE
A057335(7)= 30 and 30 = 2*3*5 so a(7) = 1; A057335(9)= 24 and 24 = 8*3 so a(9) = 3
From Omar E. Pol, Aug 30 2013: (Start)
Written as an irregular triangle with row lengths A011782:
0;
1;
2,1;
3,2,1,1;
4,3,2,2,1,1,1,1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
...
Column 1 is A001477. Row sums give A000225. Row lengths is A011782.
(End)
MATHEMATICA
nmax = 105;
A062050 = Flatten[Table[Range[2^n], {n, 0, Log[2, nmax] // Ceiling}]];
Module[{b}, b[_] = 0;
a[n_] := If[n == 0, 0, With[{t = A062050[[n]]}, b[t] = b[t] + 1]]];
a /@ Range[0, nmax] (* Jean-François Alcover, Jan 12 2022 *)
PROG
(PARI) lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2]; ); for (i=1, nn, print1(valuation(v[i], 2), ", "); ); } \\ Michel Marcus, Feb 09 2014
(PARI) my(L(n)=if(n, logint(n, 2), -1)); a(n) = my(p=L(n)); p - L(n-1<<p); \\ Kevin Ryde, Aug 06 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Nov 12 2001
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
STATUS
approved