login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266640
Reversed reduced frequency counts for A004001: a(n) = A265754(A054429(n)).
3
1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 5, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,2
COMMENTS
Deleting all 1's and decrementing the remaining terms by one gives the sequence back.
LINKS
T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
FORMULA
a(n) = A265754(A054429(n)).
Other identities. For all n >= 0:
a(2^n) = n+1.
EXAMPLE
Illustration how the sequence can be constructed by concatenating the reversed reduced frequency counts R_n of each successive level n of A004001-tree:
1
/ \
2 1
/|\ \
____________3 2 1 1
/ / / | |\ \ \
________4 __3 2 1 2 1 1 1
/ / / / / / /| /| | |\ \ \ \
5 4 3 2 1 3 2 1 2 1 1 2 1 1 1 1
etc.
PROG
(Scheme) (define (A266640 n) (A265754 (A054429 n)))
CROSSREFS
Cf. A000079 (positions of records, where n appears for the first time).
Cf. A265754 (obtained from the mirror image of the same tree).
Sequence in context: A366281 A365805 A334749 * A359350 A065120 A176206
KEYWORD
nonn,tabf
AUTHOR
Antti Karttunen, Jan 22 2016
STATUS
approved