login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062050
n-th chunk consists of the numbers 1, ..., 2^n.
20
1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
OFFSET
1,3
COMMENTS
a(k) is the distance between k and the largest power of 2 not exceeding k, where k = n + 1. [Consider the sequence of even numbers <= k; after sending the first term to the last position delete all odd-indexed terms; the final term that remains after iterating the process is the a(k)-th even number.] - Lekraj Beedassy, May 26 2005
Triangle read by rows in which row n lists the first 2^(n-1) positive integers, n >= 1; see the example. - Omar E. Pol, Sep 10 2013
FORMULA
a(n) = A053645(n) + 1.
a(n) = n - msb(n) + 1 (where msb(n) = A053644(n)).
a(n) = 1 + n - 2^floor(log(n)/log(2)). - Benoit Cloitre, Feb 06 2003; corrected by Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 25 2008
G.f.: 1/(1-x) * ((1-x+x^2)/(1-x) - Sum_{k>=1} 2^(k-1)*x^(2^k)). - Ralf Stephan, Apr 18 2003
a(1) = 1, a(2*n) = 2*a(n) - 1, a(2*n+1) = 2*a(n). - Ralf Stephan, Oct 06 2003
A005836(a(n+1)) = A107681(n). - Reinhard Zumkeller, May 20 2005
a(n) = if n < 2 then n else 2*a(floor(n/2)) - 1 + n mod 2. - Reinhard Zumkeller, May 07 2012
Without the constant 1, Ralf Stephan's g.f. becomes A(x) = x/(1-x)^2 - (1/(1-x)) * Sum_{k>=1} 2^(k-1)*x^(2^k)) and satisfies the functional equation A(x) - 2*(1+x)*A(x^2) = x*(1 - x - x^2)/(1 - x^2). - Petros Hadjicostas, Apr 27 2020
For n > 0: a(n) = (A006257(n) + 1) / 2. - Frank Hollstein, Oct 25 2021
EXAMPLE
From Omar E. Pol, Aug 31 2013: (Start)
Written as irregular triangle with row lengths A000079:
1;
1, 2;
1, 2, 3, 4;
1, 2, 3, 4, 5, 6, 7, 8;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
...
Row sums give A007582.
(End)
MAPLE
A062050 := proc(n) option remember; if n < 4 then return [1, 1, 2][n] fi;
2*A062050(floor(n/2)) + irem(n, 2) - 1 end:
seq(A062050(n), n=1..89); # Peter Luschny, Apr 27 2020
MATHEMATICA
Flatten[Table[Range[2^n], {n, 0, 6}]] (* Harvey P. Dale, Oct 12 2015 *)
PROG
(PARI) a(n)=floor(n+1-2^floor(log(n+1-10^-27)/log(2)))
(PARI) a(n)= n - 1<<logint(n, 2) + 1; \\ Ruud H.G. van Tol, Dec 13 2024
(Haskell)
a062050 n = if n < 2 then n else 2 * a062050 n' + m - 1
where (n', m) = divMod n 2
-- Reinhard Zumkeller, May 07 2012
(Python)
def A062050(n): return n-(1<<n.bit_length()-1)+1 # Chai Wah Wu, Jan 22 2023
CROSSREFS
Cf. A092754.
Sequence in context: A194103 A074294 A168265 * A358086 A358066 A358085
KEYWORD
nonn,changed
AUTHOR
Marc LeBrun, Jun 30 2001
STATUS
approved