login
A194103
Natural fractal sequence of A194102.
3
1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4
OFFSET
1,2
COMMENTS
See A194029 for definitions of natural fractal sequence and natural interspersion.
MATHEMATICA
z = 40; g = Sqrt[2];
c[k_] := Sum[Floor[j*g], {j, 1, k}];
c = Table[c[k], {k, 1, z}] (* A194102 *)
f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
f = Table[f[n], {n, 1, 800}] (* A194103 new *)
r[n_] := Flatten[Position[f, n]]
t[n_, k_] := r[n][[k]]
TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]]
p = Flatten[Table[t[k, n - k + 1], {n, 1, 16}, {k, 1, n}]] (* A194104 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194105 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 15 2011
STATUS
approved