login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204421
Symmetric matrix: f(i,j)=(i+j+2 mod 3), by antidiagonals.
2
1, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,2
COMMENTS
A block matrix over {0,1,2}. See A204263 for a guide to related matrices and permanents.
EXAMPLE
Northwest corner:
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
MATHEMATICA
f[i_, j_] := Mod[i + j + 2, 3];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 14}, {i, 1, n}]] (* A204421 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 22}] (* A179079 *)
CROSSREFS
Sequence in context: A180823 A049800 A281082 * A131018 A300067 A035395
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 15 2012
STATUS
approved