login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204420
Triangle T(n,k) giving number of degree-2n permutations which decompose into exactly k cycles of even length, k=0..n.
1
1, 0, 1, 0, 6, 3, 0, 120, 90, 15, 0, 5040, 4620, 1260, 105, 0, 362880, 378000, 132300, 18900, 945, 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395, 0, 6227020800, 7628100480, 3511347840, 794593800, 94594500, 5675670, 135135
OFFSET
0,5
COMMENTS
The row polynomials t(n,x):= sum(T(n,k)*x^k, k=0..n) satisfy the recurrence relation t(n,x) = (2n-1)*(x+2n-2)*t(n-1,x), with t(0,x)=1, hence t(n,x)=(2n-1)!!*x(x+2)(x+4)...(x+2n-2).
LINKS
Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Angelo Lucia and Amanda Young, A Nonvanishing Spectral Gap for AKLT Models on Generalized Decorated Graphs, arXiv:2212.11872 [math-ph], 2022.
FORMULA
T(n,k) = (2n-1)!!*2^(n-k)*A132393(n,k).
T(n,k) = (2n-1)T(n-1,k-1) + (2n-1)(2n-2)*T(n-1,k); T(0,0)=1, T(n,0)=0 for n>0,
T(n,n) = (2n-1)!! = A001147(n).
T(n,1) = (2n-1)! = A009445(n-1).
EXAMPLE
1;
0, 1,
0, 6, 3;
0, 120, 90, 15;
0, 5040, 4620, 1260, 105;
0, 362880, 378000, 132300, 18900, 945;
0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
MAPLE
T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
MATHEMATICA
nn=12; Prepend[Map[Prepend[Select[#, #>0&], 0]&, Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2), {x, 0, nn}], {x, y}])[[n]], {n, 3, nn, 2}]], {1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
PROG
(PARI) T(n, k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n, k, 1); \\ Andrew Howroyd, Feb 12 2018
CROSSREFS
Row sums give: A001818. - Alois P. Heinz, Jul 21 2013
Sequence in context: A102525 A119923 A359194 * A331570 A102410 A105123
KEYWORD
easy,nonn,tabl
AUTHOR
José H. Nieto S., Jan 15 2012
STATUS
approved