OFFSET
0,5
COMMENTS
The row polynomials t(n,x):= sum(T(n,k)*x^k, k=0..n) satisfy the recurrence relation t(n,x) = (2n-1)*(x+2n-2)*t(n-1,x), with t(0,x)=1, hence t(n,x)=(2n-1)!!*x(x+2)(x+4)...(x+2n-2).
LINKS
Alois P. Heinz, Rows n = 0..85, flattened
Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Angelo Lucia and Amanda Young, A Nonvanishing Spectral Gap for AKLT Models on Generalized Decorated Graphs, arXiv:2212.11872 [math-ph], 2022.
FORMULA
EXAMPLE
1;
0, 1,
0, 6, 3;
0, 120, 90, 15;
0, 5040, 4620, 1260, 105;
0, 362880, 378000, 132300, 18900, 945;
0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
MAPLE
T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
MATHEMATICA
nn=12; Prepend[Map[Prepend[Select[#, #>0&], 0]&, Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2), {x, 0, nn}], {x, y}])[[n]], {n, 3, nn, 2}]], {1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
PROG
(PARI) T(n, k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n, k, 1); \\ Andrew Howroyd, Feb 12 2018
CROSSREFS
KEYWORD
AUTHOR
José H. Nieto S., Jan 15 2012
STATUS
approved