login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204418
Periodic sequence 1,0,1,..., arranged in a triangle.
5
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
OFFSET
0,1
COMMENTS
Binomial transform is A130781.
Row sums: 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, ... = A004396(n+1) = A131737 (n+2) .
Diagonal sums: 1, 0, 2, 1, 1, 3, 3, 1, 5, 3, 2, 6, 5, 2, 8, 5, 3, 9, 7, 3, 11, 7, 4, 12, 9, 4, 14, 9, 5, 15, ..
Essentially the same as A141571 and A011655. - R. J. Mathar, Jan 16 2012
As sequence a(n) this is the characteristic sequence for the mod m reduced odd numbers (i.e., gcd(2*n+1,m)=1, n >= 0) for each modulus m from 3*A003586 = [3,6,9,12,18,24,27,36,48,...]. - Wolfdieter Lang, Feb 04 2012
Disregarding the triangle: a(A173732(n)) = 1. - Reinhard Zumkeller, Apr 29 2012
REFERENCES
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
FORMULA
If k==0 mod(3), T(n+k,k) = 1, 0, 1, 1, 0, 1, 1, 0, 1, ... (A204418)
If k==1 mod(3), T(n+k,k) = 1, 0, 0, 1, 0, 0, 1, 0, 0, ... (A079978)
If n==2 mod(3), T(n+k,k) = 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
a(A016777(n)) = 0.
G.f.:(1+x^2)/(1-x^3).
G.f.: U(0) where U(k)= 1 + x^2/(1 - x/(x + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 17 2012
EXAMPLE
Triangle begins:
1;
0, 1;
1, 0, 1;
1, 0, 1, 1;
0, 1, 1, 0, 1;
1, 0, 1, 1, 0, 1;
1, 0, 1, 1, 0, 1, 1;
0, 1, 1, 0, 1, 1, 0, 1;
1, 0, 1, 1, 0, 1, 1, 0, 1;
PROG
(PARI) a(n)=n%3!=1 \\ Charles R Greathouse IV, Jul 13 2016
CROSSREFS
Cf. A011655.
Sequence in context: A260190 A260192 A057078 * A127245 A175192 A088150
KEYWORD
nonn,tabl,easy
AUTHOR
Philippe Deléham, Jan 15 2012
STATUS
approved