OFFSET
0,1
COMMENTS
Binomial transform is A130781.
Diagonal sums: 1, 0, 2, 1, 1, 3, 3, 1, 5, 3, 2, 6, 5, 2, 8, 5, 3, 9, 7, 3, 11, 7, 4, 12, 9, 4, 14, 9, 5, 15, ..
As sequence a(n) this is the characteristic sequence for the mod m reduced odd numbers (i.e., gcd(2*n+1,m)=1, n >= 0) for each modulus m from 3*A003586 = [3,6,9,12,18,24,27,36,48,...]. - Wolfdieter Lang, Feb 04 2012
Disregarding the triangle: a(A173732(n)) = 1. - Reinhard Zumkeller, Apr 29 2012
REFERENCES
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
LINKS
FORMULA
If k==0 mod(3), T(n+k,k) = 1, 0, 1, 1, 0, 1, 1, 0, 1, ... (A204418)
If k==1 mod(3), T(n+k,k) = 1, 0, 0, 1, 0, 0, 1, 0, 0, ... (A079978)
If n==2 mod(3), T(n+k,k) = 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
a(A016777(n)) = 0.
G.f.:(1+x^2)/(1-x^3).
G.f.: U(0) where U(k)= 1 + x^2/(1 - x/(x + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 17 2012
EXAMPLE
Triangle begins:
1;
0, 1;
1, 0, 1;
1, 0, 1, 1;
0, 1, 1, 0, 1;
1, 0, 1, 1, 0, 1;
1, 0, 1, 1, 0, 1, 1;
0, 1, 1, 0, 1, 1, 0, 1;
1, 0, 1, 1, 0, 1, 1, 0, 1;
PROG
(PARI) a(n)=n%3!=1 \\ Charles R Greathouse IV, Jul 13 2016
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Jan 15 2012
STATUS
approved