login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204417
T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with every 3X3 subblock having three strictly increasing elements in a row horizontally or vertically, exactly one way
9
3570, 34274, 34274, 423416, 154938, 423416, 2827014, 781884, 781884, 2827014, 22956524, 5597126, 947990, 5597126, 22956524, 254913953, 52039032, 5776350, 5776350, 52039032, 254913953, 2004465237, 395943745, 49914501, 11785518
OFFSET
1,1
COMMENTS
Table starts
........3570.......34274......423416.....2827014....22956524....254913953
.......34274......154938......781884.....5597126....52039032....395943745
......423416......781884......947990.....5776350....49914501....422397021
.....2827014.....5597126.....5776350....11785518....89459577...1122887052
....22956524....52039032....49914501....89459577...253954944...1364559057
...254913953...395943745...422397021..1122887052..1364559057...2050960896
..2004465237..2826265830..3619976949..6016853259..8802512928..13168291392
.15823989959.26252359826.29207652750.53009843553.94119917760.115434720000
LINKS
FORMULA
Empirical for column k:
k=1: (order 14 recurrence)
k=2: (order 19 recurrence for n>22)
k=3: a(n) = 577*a(n-3) +63*a(n-5) -63*a(n-8) for n>16
k=4: a(n) = 577*a(n-3) for n>15
k=5: a(n) = 577*a(n-3) for n>16
k=6: a(n) = 577*a(n-3) for n>17
k=7: a(n) = 577*a(n-3) for n>18
EXAMPLE
Some solutions for n=3 k=3
..0..0..2..2..2....2..2..0..0..2....0..0..2..0..1....1..2..2..1..0
..0..1..0..1..2....2..1..0..1..0....0..0..0..1..0....0..0..1..2..1
..1..2..2..1..0....0..1..2..2..1....0..1..2..2..1....0..1..2..1..2
..2..0..1..2..1....0..0..1..2..2....1..0..1..2..2....1..1..0..1..2
..0..1..2..1..2....0..1..0..1..2....0..1..0..1..2....0..0..1..2..0
CROSSREFS
Sequence in context: A206090 A357590 A071144 * A204410 A204409 A152217
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 15 2012
STATUS
approved