login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300067
Period 6: repeat [0, 0, 0, 1, 2, 2].
4
0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2
OFFSET
0,5
COMMENTS
Used for A300068.
FORMULA
a(n) = floor((n (mod 6))/3) + floor((n (mod 6))/4), n >= 0.
G.f.: x^3*(1 + 2*x + 2*x^2)/(1 - x^6).
a(n) = (5 - 2*cos(n*Pi/3) - 2*cos(2*n*Pi/3) - cos(n*Pi) - 4*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Oct 04 2018
MATHEMATICA
PadRight[{}, 102, {0, 0, 0, 1, 2, 2}] (* or *)
CoefficientList[Series[x^3*(1 + 2 x + 2 x^2)/(1 - x^6), {x, 0, 102}], x] (* Michael De Vlieger, Feb 25 2018 *)
PROG
(PARI) a(n) = my(v=[0, 0, 1, 2, 2]); v[if(n%6==0, 1, n%6)] \\ Felix Fröhlich, Feb 24 2018
(PARI) concat(vector(3), Vec(x^3*(1 + 2*x + 2*x^2)/(1 - x^6) + O(x^40))) \\ Felix Fröhlich, Feb 25 2018
CROSSREFS
Cf. A300068.
Sequence in context: A281082 A204421 A131018 * A035395 A116856 A140344
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 24 2018
STATUS
approved