login
A131018
Expansion of (q^-3) * psi(q) / psi(q^25) in powers of q where psi() is a Ramanujan theta function.
1
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -2, -2, 0, 0, 0, -1, -2, 0
OFFSET
-3,76
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
F. Calegari, Review of "A first Course in modular forms" by F. Diamond and J. Shurman, Bull. Amer. Math. Soc., 43 (No. 3, 2006), 415-421. See p. 418
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: (x^-3) * Product_{k>0} (1 - x^k) * (1 + x^k)^2 / ((1 - x^(25*k)) * (1 + x^(50*k))^2).
EXAMPLE
G.f. = q^-3 + q^-2 + 1 + q^3 + q^7 + q^12 + q^18 - q^22 - q^23 - q^28 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(25/2)], {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := SeriesCoefficient[ q^-3 QPochhammer[ q^2]^2 QPochhammer[ q^25] / (QPochhammer[ q] QPochhammer[ q^50]), {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-3, 0, n+=3; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^25 + A) / (eta(x + A) * eta(x^50 + A)^2), n))};
CROSSREFS
Sequence in context: A049800 A281082 A204421 * A300067 A035395 A116856
KEYWORD
sign
AUTHOR
Michael Somos, Jun 10 2007
STATUS
approved