OFFSET
-3,76
COMMENTS
REFERENCES
F. Calegari, Review of "A first Course in modular forms" by F. Diamond and J. Shurman, Bull. Amer. Math. Soc., 43 (No. 3, 2006), 415-421. See p. 418
LINKS
G. C. Greubel, Table of n, a(n) for n = -3..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: (x^-3) * Product_{k>0} (1 - x^k) * (1 + x^k)^2 / ((1 - x^(25*k)) * (1 + x^(50*k))^2).
EXAMPLE
G.f. = q^-3 + q^-2 + 1 + q^3 + q^7 + q^12 + q^18 - q^22 - q^23 - q^28 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(25/2)], {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := SeriesCoefficient[ q^-3 QPochhammer[ q^2]^2 QPochhammer[ q^25] / (QPochhammer[ q] QPochhammer[ q^50]), {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-3, 0, n+=3; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^25 + A) / (eta(x + A) * eta(x^50 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 10 2007
STATUS
approved